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A b s t r a c t

Introduction: It has been proved that genetic and epigenetic changes play 
a  significant role in the development and progression of acute leukemia. 
The aim of our study was to evaluate the frequency and prognostic impli-
cations of genetic and epigenetic alterations in p15, MGMT, DNMT3A and 
TP53 genes in acute leukemias.
Material and methods: We included in the study 59 patients with acute 
leukemia. Evaluation of TP53 and DNMT3A mutations was performed using 
sequencing analysis and PCR-RFLP, respectively. Methylation status of MGMT 
and p15 genes was evaluated using MSP and COBRA, respectively. For as-
sessment of global DNA methylation ELISA-based kit was used.
Results: We found that overall survival was higher for ALL patients. MGMT 
promoter methylation was significantly associated with patients age at the 
time of diagnosis (p = 0.03). TP53 and DNMT3A mutations were observed 
only in AML patients (16.67% and 8.8%, respectively). Patients with acute 
leukemia and p15 promoter methylation had significantly more frequently 
mutated TP53 gene (p = 0.04) and AML patients with p15 promoter methyl-
ation had significantly more frequently detected global hypomethylation of 
DNA (p = 0.009). In the group of ALL patients we noted an opposite trend: 
only patients negative for p15 promoter methylation were characterized by 
global DNA hypomethylation.
Conclusions: Our findings demonstrate that MGMT promoter methylation 
can have a considerable impact on the development of acute leukemia in 
older patients. DNMT3A and TP53 mutations may play a significant role in 
AML development. However, further studies conducted in a larger cohort of 
patients are needed to determine its clinical utility.
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Introduction

Leukemias are a clinically and genetically het-
erogeneous group of diseases that begin in early 
blood-forming cells found in the bone marrow. It is 
a result of genetic mutations and transformation 
of a single early progenitor lymphoid or myeloid 
cell. Acute lymphoblastic leukemia (ALL) is the 
most common leukemia in children, accounting 
for up to 80%, and only for 20% of leukemias in 
adults [1], whereas acute myeloblastic leukemia 
(AML) is more frequent in patients at an older age 
where the median age at the time of diagnosis is 
about 70 years [2]. 

Genetics plays an increasingly important role 
in the classification, risk stratification, and man-
agement of acute leukemias [3]. For the past 
several years, an increasing number of gene mu-
tations deregulating expression of these genes 
and epigenetic changes have been established in 
the pathogenesis of acute leukemias [4, 5]. The 
most commonly mutated gene in people who 
have cancer is the TP53 tumor-suppressor gene 
[6]. The P53 protein, widely known as a transcrip-
tion factor, plays an important role in the main-
tenance of genetic stability and preventing can-
cer formation. Loss of P53 function is associated 
with various characteristics of tumors, including 
genetic instability or deregulation of the cell cycle 
[7]. It has been reported that these mutations are 
associated with a poor prognosis and treatment 
failure in both ALL and AML [8, 9]. It has also been 
shown that DNMT3A mutations are essential for 
early development of acute leukemia [10, 11].  
DNMT3A (DNA (cytosine-5-)-methyltransferase 3α),  
a member of the de novo methyltransferases, is 
closely associated with epigenetic modifications 
in mammalian development and diseases. More 
recent studies have identified that most of the 
recurrent somatic mutations in DNMT3A in AML 
are heterozygous [10]. The normal function of 
DNMT3A can be disturbed by these mutations, 
which subsequently results in an abnormality of 
epigenetic modification. In approximately 20% of 
AML cases mutations in the DNMT3A gene have 
been observed and correlated with a poor clinical 
outcome [12, 13]. 

There is more and more evidence that epigen-
etic changes play an important role in the devel-
opment of cancer, including acute leukemia. DNA 
methylation abnormalities are common in a vari-
ety of cancers as well as in development. Global 
hypomethylation and hypermethylation, which 
repress transcription of the promoter regions of 
tumor suppressor genes leading to gene silencing, 
have been recognized as a cause of oncogenesis 
[14]. Numerous changes in the methylation of 
promoter regions of various genes have been ob-
served in patients with acute leukemia [15, 16]. 

The p15 gene, inhibitor of cyclin-dependent kinas-
es 4/6 (CDK4/6), is among the most frequent tar-
gets of aberrant methylation in acute leukemias 
[17]. Hypermethylation of the DNA repair gene 
MGMT (O6-methylguanine DNA methyltransfer-
ase) has been found in AML, but its potential prog-
nostic value is not yet fully elucidated [18, 19]. 

The aim of the study was to determine wheth-
er the MGMT and p15 promoter hypermethyla-
tion and global DNA hypomethylation, as well as  
DNMT3A and TP53 mutations, have an impact on 
the development acute leukemias. Moreover, we 
wanted to investigate the relationship between 
examined molecular parameters and time at di-
agnosis and overall survival in patients with acute 
leukemia. A better understanding of the underlying 
genetic and epigenetic processes may lead to gain-
ing insight into the mechanism of leukemogenesis 
in ALL and AML, as well as providing prognostic in-
formation and prospective healing targets.

Material and methods

Materials

Fifty-nine Caucasian patients (19 ALL: 11 male 
and 8 female; 36 AML: 22 male and 14 female;  
4 without a precise diagnosis: 3 male and 1 female; 
median age: 54) involved in this study were re-
cruited at the Department of Hematology, Medical 
University of Lodz, between 1998 and 2001. A de-
tailed list of all patients’ characteristics is shown 
in Table I. Ethics committee approval was ob-
tained from the Institutional Review Board of the 
Medical University of Lodz (no. RNN/226/11/KE).  
Peripheral blood or bone marrow samples were 
obtained from the patients prior to the initiation 
of therapy. Genomic DNA from the peripheral 
blood or the bone marrow blast cells was isolated 
by lysis of the cells with sodium dodecyl sulfate 
(SDS), digestion with proteinase K at 37°C over-
night followed by phenol/chloroform extraction 
and ethanol precipitation.

Sequencing analysis 

Four genomic regions of the TP53 gene (exons 
5–8) were amplified by PCR, as described previous-
ly [20]. Sequence analysis was performed by the 
dideoxy termination method using the SequiTh-
erm Excel DNA Sequencing Kit (Epicentre Tech-
nologies, Madison, WI) and fluorescent-labeled 
primers. Sequencing primers used were as fol-
lows: 5′-CAAGCAGTCACAGCACATGA-3′ (forward) 
and 5′-AACCAGCCCTGTCGTCTCT-3′ (reverse), for 
exon 5; 5′-CAGGCCTCTGATTCCTCACT-3′ (forward) 
and 5′-AGACCTCAGGCGGCTCATAG-3′ (reverse), for 
exon 6; 5′-ATCTCCTAGGTTGGCTCTGA-3′ (forward) 
and 5′-TGGCAAGTGGCTCCTGACCT-3′ (reverse), for 
exon 7; 5′-CTCTTTTCCTATCCTGAGTA-3′ (forward) 
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and 5′-CTGCTTGCTTACCTCGCTTA-3′ (reverse), for 
exon 8. Products of the sequencing reaction were 
visualized and analyzed using a LiCor automated 
laser fluorescence sequencer. 

Methylation-specific PCR 

Sodium bisulfite modification of isolated ge-
nomic DNA was performed using the CpGenome 
DNA kit (Chemicon International Inc. Temecula, CA) 
according to the manufacturer’s protocol. The bi-
sulfite-treated DNA was stored at –80ºC until use. 
CpGenome Universal Methylated DNA (Chemicon 
International) was used as a methylation-positive 
control for the methylated alleles, and DNA from 
peripheral blood leukocytes was used as the con-
trol for unmethylated alleles. Methylation-specific 
PCR (MSP) for MGMT promoter methylation was 
performed in a  two-step approach as previously 
reported [21]. For each PCR, methylated and un-
methylated DNA was included as positive and 
negative controls, and water was used as a control 
for the PCR reaction. PCR products were separated 
on 3% agarose gels containing ethidium bromide. 
Product size of the unmethylated DNA was 91 bp 
and that of the methylated DNA was 83 bp.

PCR-RFLP 

DNMT3A gene mutation (R882H; GCCGC to 
GCCAC) was genotyped by means of polymerase 
chain reaction-restriction fragment length poly-
morphism (PCR-RFLP). Genomic DNA was am-
plified in a  20 µl volume containing 1 U  of Go-
TaqFlexi DNA polymerase (Promega, Poland), 
1 µl of template DNA, 4 µl of 5X PCR buffer,  
2.0 mM MgCl

2, 0.3 mM dNTPs (mixture of dATP, 
dTTP, dCTP and dGTP), and 0.6 pmol of each prim-
er (forward: 5′-GTGATCTGAGTGCCGGGTTG-3′ and 
reverse: 5′-TCTCTCCATCCTCATGTTCTTG-3′). The  
PCR cycling conditions were: 10 min of initial de-
naturation at 95°C, followed by 35 cycles of de-
naturation for 30 s at 95°C, annealing for 30 s at 
59°C and extension for 1 min at 72°C, followed by 
7 min of final extension at 72°C. A 7 µl aliquot of 
PCR product was then digested with 3 U of restric-
tive enzyme SatI (Fnu4HI) and 2 µl of 1X BufferG 
(Thermo Scientific) in a final volume of 20 µl. After 
incubation at 37°C for 16 h restriction fragments 
were separated in a 2% agarose gel stained with 
Midori Green DNA Stain (Nippon Genetics) and vi-
sualized under UV light. Positive samples showed  
3 bands (289 bp, 190 bp, 114 bp) because of the loss 
of a restriction site of SatI caused by the mutation.

Combined bisulfite restriction analysis 
(COBRA)

For methylation analysis of the p15 gene 
we used combined bisulfite  restriction analysis  

Table I. Patient characteristics

Parameter Value

Age, median (range) [years] 54 (32.5–63.5)

Sex:

Male 36 (61.0%)

Female 23 (39.0%)

Type of leukemia:

ALL 19 (32.2%)

AML 36 (61.0%)

Unknown 4 (6.8%)

OS, median (25–75%) [months]:

ALL 16.06 (6.9–103.7)

AML 9.29 (0.8–28.0)

Unknown 10.85 (6.35–11.25)

MGMT methylation:

ALL – positive (%) 8/19 (42.1%)

AML – positive (%) 11/36 (30.6%)

Unknown – positive (%) 2/4 (50%)

NA (% of all) 0 (0%)

p15 methylation:

ALL – positive (%) 1/17 (5.9%)

AML – positive (%) 11/33 (33.3%)

Unknown – positive (%) 2/2 (100%)

NA (% of all) 7 (11.9%)

DNMT3A mutation:

ALL – positive (%) 0/19 (0%)

AML – positive (%) 3/34 (8.8%)

Unknown – positive (%) 0/3 (0%)

NA (% of all) 3 (5.1%)

TP53 mutation:

ALL – positive (%) 0/19 (0%)

AML – positive (%) 6/36 (16.7%)

Unknown – positive (%) 0/4 (0%)

NA (% of all) 0 (0%)

Global DNA hypermethylation:

ALL – positive (%) 4/12 (33.3%)

AML – positive (%) 6/23 (26.1%)

Unknown – positive (%) 1/3 (33.3%)

NA (% of all) 21 (35.6%)

Global DNA hypomethylation:

ALL – positive (%) 8/12 (66.7%)

AML – positive (%) 17/23 (73.9%)

Unknown – positive (%) 2/3 (66.7%)

NA (% of all) 21 (35.6%)

NA – not assessed.
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(COBRA). Combined bisulfite restriction analysis 
was estimated using the MethylEdge Bisulfite Con-
version System (Promega) according to the man-
ufacturer’s instructions. The p15 gene was ampli-
fied by PCR using TaKaRa EpiTaq HS polymerase 
for bisulfite treated DNA (Takara Bio Inc.) with 
the following primers: forward: 5′-GGAGTTTAAG-
GGGGTGGG-3′ and reverse: 5′-CCTAAATTACTTCTA-
AAAAAAAAC-3′ (Institute of Biochemistry and 
Biophysics Polish Academy of Sciences, PL). The 
amplification was carried in a 20 µl reaction mixture 
containing 1 µl of template DNA, 0.7 µl of 10 mM  
each primer, 0.6 µl 10 mM dNTPs, 1.2 µl of 10 mM  
MgCl2, and 0.1 µl of 5 U/µl EpiTaq HS polymerase 
with 2 µl of 10X EpiTaq PCR Buffer. The PCR con-
ditions were as follows: initial activation of the 
EpiTaq HS polymerase for 15 min at 95°C, fol-
lowed by 35 cycles of 1 min denaturation at 94°C, 
annealing for 1 min at 53°C and extension for  
1 min at 72°C and a final 10 min extension step 
at 72°C. After amplification, PCR products were 
digested with a specific BstUI restriction enzyme 
(ABO) that digests alleles that were methylated 
prior to bisulfite treatment. After digestion, DNA 
fragments were separated in a 2.5% agarose gel 
stained with Midori Green DNA Stain (Nippon 
Genetics). Product size of the unmethylated DNA 
was 193 bp and the methylated DNA fragment 
was 115 bp. 

Global DNA methylation

Global DNA methylation levels of 40 cases were 
measured using the 5-mC DNA ELISA Kit (Zymo 
Research Corporation, Irvine, CA., USA) according 
to the manufacturer’s protocol. In brief, 100 ng of 
unknown 5-mC DNA samples was used for anal-
ysis. Anti-5-methylcytosine monoclonal antibody 
(Anti-5-mC mAb) that binds specifically to meth-
ylated sites of the genome and the HRP-conjugat-
ed secondary antibody were used to detect 5-mC. 
Absorbance at 405–450 nm was measured using 
an ELISA plate reader (Tecan Infinite 200 PRO). 
The presence or absence of 5-mC was determined 
by comparing the absorbance of samples to neg-
ative (0% methylation) and positive (100% meth-
ylation) controls. A  standard curve was generat-
ed by preparing 7 mixtures of the negative and 
positive controls (0, 5, 10, 25, 50, 75 and 100%). 
These were assayed in parallel with the samples. 
All samples were prepared in duplicate. To deter-
mine the 5-mC percentage for unknowns DNA 
samples the following equation, derived from the 
logarithmic second-order regression, was used:  
%5-5mC = e[(absorbance – y-intercept)/slope].

Statistical analysis

Statistical analysis was performed using Sta-
tistica 10.0 PL software (StatSoft, Poland). The 

distribution of variables was tested with the 
Shapiro-Wilk test and Kolmogorov-Smirnov test 
with Lilliefors’ correction. Because of non-Gauss-
ian distribution of all analyzed variables we used 
a non-parametric test and the results are shown 
as the median followed by the interquartile range 
(IQR). P < 0.05 was considered as significant and 
we used the following tests: the Mann-Whitney 
U test to verify differences between two groups; 
Pearson’s c2 test and Yates’s correction to veri-
fy differences in the distribution of categorical 
variables between groups; and the Mantel-Cox 
test and Kaplan-Meier curves for analysis of sur-
vival.

Results

Analysis of MGMT methylation status 

We found that in patients with acute leukemia 
35.59% of cases had a  methylated MGMT pro-
moter. Methylation of the MGMT promoter was 
detected in 42.11% of ALL samples and 30.56% 
of AML samples. There were no significant differ-
ences in MGMT methylation status between AML 
and ALL patients. We also found that in the total 
group of patients (p = 0.03) and ALL cases (p = 
0.04), as well as AML patients (p = 0.04), meth-
ylation of MGMT was associated with age at the 
time of diagnosis (Figure 1). An example of the 
result of MGMT methylation status is shown in 
Figure 2.

Analysis of p15 methylation status

Methylation of the p15 promoter was detected 
in 23.08% of all patients, 5.88% of ALL samples 
and 33.33% of AML samples. The difference be-
tween myeloid and lymphoblastic leukemia was 
significant (p = 0.02, c2 = 5.5). There was no asso-
ciation between p15 methylation status and age 
of diagnosis in any considered group of patients. 
An example of the result of p15 methylation anal-
ysis is shown in Figure 2.

Analysis of global DNA methylation, 
DNMT3A and TP53 mutation

We did not find any significant correlation be-
tween global DNA methylation, DNMT3A or TP53 
mutation and age of diagnosis. Mutation of TP53 
was significantly (p = 0.02, c2 = 5.47) more fre-
quent in AML patients than in ALL (16.67% and 
0.00% respectively). DNMT3A mutation was ob-
served in 3 of all 56 (5.36%) patients, but only in 
AML samples (8.8%). There were no significant 
associations between DNA methylation, DNMT3A 
gene mutation and type of leukemia. Figure 3 
shows an example of the results of DNMT3A (A) 
and TP53 (B) mutation analysis.
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Analysis of relations between examined 
molecular parameters

We found that patients with acute leukemia 
and a methylated promoter for p15 significantly  
(p = 0.04, c2 = 4.25) more frequently had a mutat-
ed TP53 gene (25.00% vs. 5.00%). We also found 
that AML patients with a methylated promoter for 
p15 significantly (p = 0.009, c2 = 6.76) more fre-
quently had global hypomethylation of DNA de-
tected (100% vs. 61.54%). In the group of ALL pa-
tients we noted an opposite trend: only patients 
negative for methylation of the p15 promoter 
were characterized by global DNA hypomethyl-
ation, but this difference did not reach the level 
of significance. These differences are shown in 
Figure 4. We also did not find any differences be-
tween female and male patients (p > 0.05).

Analysis of survival

The median overall survival in the group of 
patients with acute leukemia was 9.9 (16.45) 
months; when we consider type of leukemia it 
was 9.29 (27.23) months in AML and 16.06 (96.8) 
in ALL patients. We also assessed the influence of 

examined molecular parameters on OS. We did 
not find any correlation between examined pa-
rameters and OS of patients.

Discussion

Genetic disorders are the basis of the malig-
nant transformation process in acute leukemia re-
sulting in abnormal gene expression and cellular 
transduction pathways and interfering with the 

Figure 1. Comparison of age of patients in asso-
ciation with methylation status of MGMT gene in 
total group of patients (A), ALL patients (B) and 
AML patients (C)
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proper course of hematopoiesis such as self-re-
newal, proliferation and differentiation [22]. In 
the present study we examined the TP53 gene 
mutations that contribute to the pathogenesis of 
acute leukemia [23]. TP53 is the most frequently 
studied gene in cancer and is well characterized in 
other hematological malignancies, including acute 
myeloid leukemia (AML) and chronic lymphocyt-
ic leukemia (CLL), but data on frequency and the 
prognostic impact of TP53 mutations in ALL are 
limited. In our study, TP53 mutation was not found 
in ALL patients. In ALL, TP53 mutations are rather 
infrequent. In childhood B-ALL and pediatric T-ALL 
the reported prevalence is 2–5% of cases [24, 25], 

whilst in adult patients it is 6.4–11.1% of cases 
[26]. On the other hand, TP53 mutations occur 
in 15.7% of ALL cases, which increases with age. 
Moreover, it is associated with MYC rearrange-
ment, low hypodiploidy and a poor prognosis [27]. 
Other studies have shown that TP53 mutations 
are frequently detected in AML with complex 
karyotype (AML-CK) (59–78%) [28–30] or therapy- 
related AML [31] but in patients without CK (2.1%) 
[29] and with 17p chromosomal abnormality 
(2.8%) [32] it occurs rather rarely. In our study, 
TP53 mutation was observed in 16.67% of AML 
cases, which is comparable to the frequency re-
ported by others researchers. Shih et al. reported 

Figure 3. DNMT3A and TP53 mutation in acute leukemia patients. A – PCR-RFLP results for the DNMT3A muta-
tion. Presence of 289 bp PCR product indicates that the acute leukemia sample is positive for DNMT3A mutation.  
B – Example of the result of direct sequencing of a fragment of exon 6 of the TP53 gene

M – PCR product containing mutation, U – PCR product without mutation, MW – molecular weight marker (a 100-bp marker 
ladder).

 MW U U U U U U U U U M U U

289 bp

190 bp

114 bp

A

B

 DNA sample with mutation Negative control

Figure 4. MGMT and p15 methylation in acute leukemia patients. A – MSP results for the MGMT promoter methyl-
ation. Presence of 83-bp PCR product indicates that the acute leukemia sample is positive for MGMT methylation. 
B – COBRA results for p15 methylation. Presence of 115-bp PCR product indicates that the acute leukemia sample 
is positive for p15 methylation

M – methylated PCR product, U – unmethylated PCR product, NC – negative control, PC – positive control, MW – molecular weight 
marker (a 100-bp marker ladder).

 M U M U M U M U M U M U M U M U PC NC MW

91 bp

83 bp

193 bp

115 bp

A

B

 MW PC U M U M U NC
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that TP53 mutation occurs in 21% of MDS or AML 
patients. Moreover, patients with a  TP53 muta-
tion or loss of the TP53 locus had worse overall 
survival compared to those with wild-type TP53 
[33]. Our study shows that TP53 mutation occurs 
in a significant proportion of AML cases. However, 
we did not find any prognostic value for this alter-
ation, in contrast with other studies [8, 30]. 

In this study we also examined the DNMT3A 
mutation. DNMT3A appears to play an important 
role as a novel prognostic marker in adult AML [34]. 
Our data demonstrated that the DNMT3A muta-
tion occurs in a small number of cases and only 
AML patients (8.8%). In other studies, DNMT3A 
mutations have been recently found in about 20% 
to 41% of AML patients [11, 35–37]. In contrast, 
DNMT3A mutations occur at a  low frequency in 
myelodysplastic syndrome patients (8%) [38] and 
are also rare in pediatric and childhood AML [39, 
40]. Ley et al. observed an adverse prognostic im-
pact of the mutation for AML patients [36], and 
this finding is consistent with other studies [11, 
34, 39]. DNMT3A mutation was significantly as-
sociated with advanced age and shorter OS [34, 
36]. In our study we found that no mutation was 
detected in ALL samples. Yan et al. also reported 
that no mutations were detected in acute myeloid 
leukemia subtypes M1 to M3 or in acute lympho-
cytic leukemia [11]. However, in the study by Liu 
et al., DNMT3A mutations were detected in 3 of all 
57 ALL patients [41].

It is now recognized that not only genetic but 
also epigenetic alterations are important in initi-
ation and progression of both AML and ALL [42, 
43]. In the present study, we examined the meth-
ylation status of MGMT and p15 genes in AML and 
ALL patients. Reports in the literature indicate that 
both genes are unmethylated in normal hemato-
poietic cells [44–46]. Aberrant p15 methylation 
has been frequently found in leukemia cell lines, 
childhood and adult AML and ALL [45, 47–49]. In 
our study, methylation of the p15 promoter was 
observed in 23.08% of all patients but significantly 
more frequently in AML (33.3%) than ALL (5.88%). 
These findings are consistent with other studies. 
Hypermethylation of the promoter region of the 
p15 gene has been detected in primary acute leu-
kemias, with the highest frequency in AML, and it 
conferred an adverse prognosis [47, 50, 51]. How-
ever, we did not find any prognostic value of p15 
methylation in acute leukemias. We found that 
patients with acute leukemia and a  methylated 
promoter for p15 significantly more frequently 
had a  mutated TP53 gene. We also found that 
AML patients with a  methylated promoter for 
p15 significantly more frequently had global hy-
pomethylation of DNA detected. Interestingly, in 
ALL patients we noted the opposite trend: only pa-

tients negative for methylation of the p15 promot-
er were characterized by global DNA hypometh-
ylation, but this difference was not statistically 
significant. Global hypomethylation is implicated 
in the development of cancer through promoting 
genome instability and activation or overexpres-
sion of proto-oncogenes [52]. It has been shown 
that promoter-specific DNA hypermethylation and 
global DNA hypomethylation are independently 
associated with the clinical outcome in both ALL 
and AML patients [24, 25]. 

MGMT is a DNA-repairing enzyme that removes 
methyl groups as well as larger adducts at the 
O(6) position of guanine [53]. Epigenetic silenc-
ing of MGMT expression is frequently observed 
in several types of cancer as a  consequence of 
transcriptional silencing induced by hypermeth-
ylation of the CpG island of the promoter of the 
MGMT gene [54–56]. Recent studies also indicate 
an association between the methylation status 
of the MGMT promoter and the development of 
MDS [57], adult AML [58, 59] and childhood ALL 
[60, 61]. In our study we found methylation of the 
MGMT promoter in 35.59% of patients with acute 
leukemia, but there was no significant difference 
in MGMT methylation status between AML and 
ALL patients. Other studies have indicated that 
MGMT methylation occurs rather rarely (8–11%) 
[60, 61]. However, chemotherapy-induced MGMT 
methylation status differed among various AML 
subtypes, gender and age of patients. Changes 
in MGMT methylation status were more frequent 
among M4 subtype patients (50%) and were not 
detected in M3 or M5 subtypes [58]. In several 
studies, methylation of the MGMT gene promot-
er has been associated with improved prognosis 
in young [62] and elderly [63] patients with newly 
diagnosed glioblastoma and in B-DLBCL patients 
[64]. However, no significant correlation has been 
found between OS and MGMT promoter methyla-
tion status in colorectal adenocarcinoma patients 
[56]. Our findings showed that methylation of the 
MGMT gene promoter was significantly associ-
ated with the age of diagnosis and there was no 
correlation of methylation of the MGMT gene pro-
moter as an independent prognostic factor and OS 
of patients. Interestingly, Kraguljac Kurtovic et al. 
showed that concomitant aberrant hypermethyla-
tion status of p15 and MGMT genes in AML allows 
stratification of patients with AML into potentially 
distinct groups with different prognosis [59], but 
this relationship was not confirmed in our study. 
Moreover, Lenz et al. demonstrated that MGMT 
methylation does not seem to be involved in the 
pathogenesis of AML, because it was not detect-
able in the examined AML patient samples [19].

In conclusion, genetic and epigenetic abnor-
malities play a significant role in the pathogene-
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sis of acute leukemia as well as being important 
prognostic and predictive factors. MGMT promot-
er methylation was found to be associated with 
age at diagnosis in both AML and ALL patients. It 
can be considered as a biomarker for risk group 
stratification and prognosis in acute leukemias. 
However, a  limitation of our study is the small 
study group size. Therefore, further research in 
a larger group of patients is required to assess the 
clinical utility of MGMT methylation.
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